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A B S T R A C T   

Background: Identifying practice-ready evidence-based journal articles in medicine is a challenge due to the sheer 
volume of biomedical research publications. Newer approaches to support evidence discovery apply deep 
learning techniques to improve the efficiency and accuracy of classifying sound evidence. 
Objective: To determine how well deep learning models using variants of Bidirectional Encoder Representations 
from Transformers (BERT) identify high-quality evidence with high clinical relevance from the biomedical 
literature for consideration in clinical practice. 
Methods: We fine-tuned variations of BERT models (BERTBASE, BioBERT, BlueBERT, and PubMedBERT) and 
compared their performance in classifying articles based on methodological quality criteria. The dataset used for 
fine-tuning models included titles and abstracts of >160,000 PubMed records from 2012 to 2020 that were of 
interest to human health which had been manually labeled based on meeting established critical appraisal 
criteria for methodological rigor. The data was randomly divided into 80:10:10 sets for training, validating, and 
testing. In addition to using the full unbalanced set, the training data was randomly undersampled into four 
balanced datasets to assess performance and select the best performing model. For each of the four sets, one 
model that maintained sensitivity (recall) at ≥99% was selected and were ensembled. The best performing model 
was evaluated in a prospective, blinded test and applied to an established reference standard, the Clinical Hedges 
dataset. 
Results: In training, three of the four selected best performing models were trained using BioBERTBASE. The 
ensembled model did not boost performance compared with the best individual model. Hence a solo BioBERT- 
based model (named DL-PLUS) was selected for further testing as it was computationally more efficient. The 
model had high recall (>99%) and 60% to 77% specificity in a prospective evaluation conducted with blinded 
research associates and saved >60% of the work required to identify high quality articles. 
Conclusions: Deep learning using pretrained language models and a large dataset of classified articles produced 
models with improved specificity while maintaining >99% recall. The resulting DL-PLUS model identifies high- 
quality, clinically relevant articles from PubMed at the time of publication. The model improves the efficiency of 
a literature surveillance program, which allows for faster dissemination of appraised research.   

1. Introduction 

Evidence based medicine integrates clinical expertise; patient 

circumstances, values, and preferences; and best available evidence 
from clinical research in the process of health care decision making. It 
provides a coherent and structured framework for assessing and 
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applying the best evidence to complement or reduce reliance on expert 
opinion for patient care decisions [1]. >1.5 million new citations were 
indexed in PubMed in 2021 alone [2]; this volume of publication is a 
major barrier to retrieving high quality content, especially given that 
only about 1% of published clinical studies meet methodologic criteria 
for scientific rigor for use in clinical decision making [3]. 

Statement of significance.  
Problem or Issue Access to high-quality, clinically relevant research is hindered by 
the volume of published research, required critical appraisal skills, and available time. 

What is Already Known Various informatics approaches have been applied to 
retrieve high quality evidence to make it timely and accessible to clinicians. 
Pretrained language models, such as BERT and its variants, make it easier to tackle 
natural language processing tasks. Generally, models have been trained to identify 
high-quality articles focused on treatment studies. 

What this Paper Adds Using a large database of clinical articles from 2012 to 2020 
that were manually classified for methodological rigor, we fine-tuned BERT-variant 
deep learning models to identify high-quality, clinically relevant evidence from the 
biomedical literature at the time of publication for use in a real-time literature 
surveillance program. We selected and tested a model trained on BioBERT that 
classifies, by quality, articles across a range of study purpose categories with > 98% 
sensitivity and 73% specificity, that improves the efficiency of the literature 
surveillance process by > 60%.   

1.1. Background 

Information retrieval to support evidence-based practice relies on 
retrieving articles from the bibliographic repositories and then screening 
and appraising the articles manually. It is impossible for readers to keep 
up with all potentially clinically relevant articles and ensure they are of 
high quality. Automatic knowledge extraction and mining from the 
biomedical literature is therefore in high demand [4]. Empirical search 
filters like PubMed Clinical Queries [5] which are based on text mining 
and logical combinations of text strings, Medical SubHeadings terms, 
and database tags, have been developed to optimize sensitivity, speci
ficity, or the best balance between them, for different clinical study 
purpose categories [6]. Such search filters reduce the manual screening 
burden and improve the retrieval of relevant clinical studies [7,8], but 
they can be limited by their partial reliance on Medical SubHeadings 
indexing terms, as it can take up to a year for articles to be indexed in 
MEDLINE [9]. 

Machine learning is a powerful approach to automate and increase 
the speed and efficiency of manual processes, and researchers have 
employed these techniques to find high quality evidence. Earlier studies 
applied conventional machine learning approaches and feature engi
neering for this purpose [10–12]. Recent advances in deep neural net
works have been established as the state-of-the-art models for 
biomedical text classification. While conventional supervised machine 
learning models require manual feature engineering, deep learning 
models take raw text directly as the input and work in an end-to-end 
manner, i.e., the model learns all the steps between the initial input 
phase and the final output result. Neural network models, such as con
volutional neural networks, have shown superior performance for 
identifying high quality clinical treatment studies compared with 
manually created Boolean search filters [13,14]. 

Owing to recently developed pre-trained language models (PTLMs), 
natural language processing (NLP) is gradually shifting to a two-stage 
pre-training and fine-tuning paradigm that is suitable when supervised 
data is limited but large-scaled unsupervised data is readily available, 
which is a typical scenario in the biomedical domain [15]. PTLMs are 
based on transfer learning in which a machine learning model developed 
for one task is reused as the starting point for a model on a different but 
related task. When trained on a large body of text, pretrained models can 
learn universal language representations which can be beneficial for 
downstream NLP tasks and avoid the need for training a model anew. 
Fine-tuning language models is mainstream for PTLM adaption [16] and 
examples include Universal Language Model Fine-Tuning [17] and 

Bidirectional Encoder Representations from Transformers (BERT) [18]. 
Pre-trained transformer-based neural language representation 

models like BERTBASE and its variants [19–23] are contextual language 
models that excel at several natural language understanding tasks as 
well as text summarization [24], retrieval, question answering, named 
entity recognition, document classification [25], and biomedical infor
mation extraction tasks [26,27]. BERTBASE was pre-trained using text 
data from BookCorpus and English Wikipedia [16]. After a BERT model 
is pre-trained, it can be shared and fine-tuned for different NLP tasks. 
BERTBASE has been fine-tuned for the biomedical domain using several 
relevant datasets; the resulting PTLMs include BioBERT, which was 
pretrained using PubMed abstracts and PubMed Central full-text articles 
[22]; BlueBERT, pretrained using PubMed text and clinical notes from 
MIMIC-III [28]; PubMedBERT, pretrained using domain-specific text 
data from 14 million PubMed abstracts [29]; and SciBERT which was 
pretrained on a random sample of 1.14 M scientific papers from Se
mantic Scholar [21], a corpus of full text of papers that closely resembles 
MEDLINE articles. BioBERT, BlueBERT, SciBERT and PubMedBERT 
have all been applied for downstream biomedical tasks including named 
entity recognition, relation extraction, text classification, and sentence 
similarity [15]. 

Databases of clinical articles that are manually tagged for clinical 
purpose category and methodological rigor have been used for devel
opment of search filters [8,30,31] and machine learning models 
[10,13,32,33]. The creation of Clinical Hedges [8], a dataset of almost 
50,000 clinical articles relevant to human health and published in 2000 
across 170 journals compiled by the Health Information Research Unit 
(HiRU) at McMaster University, has pioneered work in this area [34,35]. 
Hedges is frequently used as a reference standard for high quality reports 
of clinical studies for new model development and testing. 

To support evidence-based practice, HiRU conducts daily surveil
lance of PubMed through the McMaster Premium Literature Service 
(PLUS) process (see Fig. 1) [36,37]. Retrieved articles are appraised for 
methodological rigor and rated for clinical relevance; these are then 
shared through push (email alerts) and pull (searchable database) 
mechanisms to practicing clinicians and other knowledge users such as 
authors of guidelines, reviews, and online textbooks [38]. 

1.2. Objectives 

In this work we apply deep learning to classify articles across a range 
of clinical categories and methods from PubMed by evidence quality to 
support daily evidence surveillance [38]. The objective is to investigate 
how modern-day deep learning models can be used to identify high- 
quality, clinically relevant evidence from the biomedical literature at 
the time of publication for use in a real-time literature surveillance 
program that supports access to the best clinical evidence for practicing 
clinicians. 

2. Methods 

2.1. Dataset construction 

The datasets for the current project include articles from ~ 120 
clinical journals published between 2012 and 2020 that were appraised 
following the methodological and quality criteria used to create the 
Clinical Hedges dataset [8]. The process of creating the dataset includes 
daily searches of PubMed for all indexed journal articles in the ~120 
journals using a highly sensitive Boolean search filter of methods terms 
adapted from Clinical Queries to filter in articles related to human 
health that are potentially ready for clinical practice (Fig. 1). In 2019, 
the search filter reduced the records indexed in the select journal titles in 
PubMed from 59 052 to 17 349 (29%). The articles retrieved from 
PubMed are manually classified by expert research associates to an 
article type (original study, systematic review, or evidence-based 
guideline) and one or more of the following purpose categories: 
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treatment, primary prevention, diagnosis, harm from clinical in
terventions, economics, overall prognosis, clinical prediction guide, or 
quality improvement [37]. The research associates then apply critical 
appraisal rules (Appendix A) to establish if the study meets rigor for the 
specified category or not [39]. For example, an article addressing 
treatment, primary prevention, or quality improvement questions, 
would be appraised for random allocation of participants to comparison 
groups, including ≥10 participants per group, having primary outcome 
(s) assessed in  ≥80% of those randomized, and reporting an outcome 
measure of known or probable clinical importance (Appendix A). Arti
cles not meeting the criteria are classified as negative and dropped from 
the remaining process but added to the ML dataset (Fig. 1). Articles that 
meet rigor criteria are classified as positive articles, confirmed by a 
clinical editor, and rated by ≥4 clinicians from a community of >4000 
for clinical relevance and newsworthiness on Likert scales of 1 to 7 [36]; 

articles with an average score ≥4 are subsequently disseminated to users 
of the McMaster PLUS system (Fig. 1). This process of selecting clinically 
relevant articles is further described by Haynes et al [40] and, in an 
earlier study, the inter-rater reliability of the critical appraisal step had 
kappa >80% for all categories of articles [41]. The dataset, therefore, 
contains articles from across types and categories that are classified as 
positive or negative for meeting methodologic criteria for the particular 
article type/category. 

Since the onset of COVID-19, and in addition to searching the 120 
journals, all of PubMed has been searched daily using COVID-19 topic- 
specific search terms with searches not restricted to the core journal 
titles. By August 12, 2022, 47,716 additional articles related to COVID- 
19 were retrieved and assessed for rigor for the same article types and 
categories described above. 

Fig. 1. Steps in database creation and article classification during daily literature surveillance for high-quality, clinically relevant articles. Retrievals from PubMed 
are filtered using empirically validated Boolean searches. CAP = Article Appraisal Process; ML = machine learning; MORE = McMaster Online Rating of Evidence; 
Plus = Premium Literature Service. 

Fig. 2. Flow of steps in training, validating, and testing the deep learning models.  
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2.2. Machine learning models 

Using the Python programming language, four pre-trained BERT 
variants were selected to fine-tune and evaluate. The models used were 
BERTBASE cased (BERTC) [18], BioBERT [22], BlueBERT [28], and 
PubMedBERT [29]. These models were selected as they were available 
in Hugging Face and perform well in the Biomedical Language Under
standing and Reasoning Benchmark leaderboard [42]. 

2.3. Experiments 

The goal of our experiments was to investigate how well fine-tuned 
BERT-variant deep learning models could identify, at the time of pub
lication, high-quality, highly relevant clinical evidence across article 
types and categories with high recall. The process is depicted in Fig. 2. 
We leveraged the high-performance computing resources provided by 
Compute Canada’s Cedar cluster. Our experiments ran on 8 Intel Silver 
4216 Cascade Lake CPU cores, an NVIDIA V100 Volta (32G HBM2 
memory) GPU, and 40 GB RAM. 

2.3.1. Data 
For the experiments, training, validation, and test datasets were 

derived from the ML dataset (Fig. 1) that included titles and abstracts of 
160,712 articles published in the core journal titles between 2012 and 
2020 identified by PubMed identifier. Across article categories, there 
were 29,810 positive articles that fulfilled all methodological rigor 
criteria and 130,902 negative articles that failed to meet ≥1 methodo
logical rigor criteria for the article categories assessed in McMaster PLUS 
(Table 1). The dataset was randomly split into 80% training, 10% vali
dation, and 10% test subsets. In the training subset, to reduce noise, we 
removed 7692 articles with <128 words in the text field to remove 
PubMed entries of corrections, etc., that did not include a full abstract 
[29]. Additional independent datasets comprising 11,506 articles from 
the PLUS core journals in 2021, and 19,516 COVID-19-related articles 
across all journals in PubMed in 2021, were used during validation to 
support selection of top performing models (Table 1). Test datasets 
include the hold-out set, a prospective dataset of 11,274 articles, and the 
Clinical Hedges dataset. 

2.3.2. Preparing the training dataset 
The dataset is large and unbalanced which may introduce a bias 

towards the majority class [43]; the training data includes four times as 
many negative articles as positive. In addition to carrying out the 
training process using the unbalanced set, we used random under
sampling to balance the article positive/negative classes to a 50:50 ratio 

by creating four smaller training sets. Each smaller balanced training set 
was created with a random selection of 25% of the negative articles and 
each of the positive articles (i.e., each set had the same positive articles 
and a different subset of the negative articles) (Table 1). 

2.3.3. Hyperparameter optimization 
Initially, we ran a Bayesian sweep [44] using hyperparameters sug

gested in the publications of the pre-trained models (Table 2). These ran 
for 24 h using 4 epochs, 2 to 4 batch sizes, and learning rates in the range 
listed in Table 2. From these, we determined that some combinations 
underperformed and were removed. The second stage included the 
reduced hyperparameter combinations and a grid search to find the best 
hyperparameters for each variation of BERT (Fig. 2). In this second 
stage, we trained models using 2 learning rates (3e-5 and 5e-5), 2 epochs 
(2 and 3), and 3 batch sizes (16, 32, and 64). 

2.3.4. Model tuning and selection 
Using each of the 4 balanced datasets, we fine-tuned 48 models (4 

pre-trained BERT-variant models BY 12 optimized hyperparameter 
configurations), yielding 192 models; and an additional 12 using Bio
BERT and the unbalanced dataset. Articles in the validation hold-out and 
2021 validation datasets were processed by each model. The area under 
the curve, sensitivity, and specificity were calculated. Only models 
achieving ≥99% sensitivity were considered and the model with optimal 
specificity within the validation datasets (hold-out and articles from 
2021, See Fig. 2) was selected for each training dataset. 

We then ensembled the four top models trained using the balanced 
datasets by voting using an extra positive vote, i.e., we classified articles 
as positive if ≥2 predicted the positive class to determine if it boosted 
performance compared with the solo models. A voting algorithm is one 
type of ensemble model that aggregates identical or conceptually variant 
ML classifiers for prediction via voting [45]. It can be viewed as a 
wrapper for a set of different classifiers that are trained and evaluated in 
parallel with the purpose of exploiting the peculiarities of each 
algorithm. 

2.3.5. Model testing 
The performance of the solo and ensembled models were compared 

to select a top performing model for testing and prospective imple
mentation. The selected BioBERT model, hereafter termed DL-PLUS, was 
trained using one of the smaller balanced datasets. It was applied 
retrospectively to the Clinical Hedges dataset and prospectively tested in 
real-time and real-world application through our literature surveillance 
process from March 12th, 2022 to Aug 12, 2022. Following the daily 
process depicted in Fig. 1, articles filtered through Boolean search 
strategies were downloaded from PubMed to the CAP database; classi
fications were made using DL-PLUS and all articles predicted to be 
positive and a random selection of 25% of the articles predicted to be 
negative were appraised by research associates blinded to the model 
classification. We calculated sensitivity, specificity, accuracy, precision, 
the number of articles needed to read (NNR = 1/precision) which is a 
measure of effort required for the literature surveillance program, as 
well as work saved over sampling @99% recall (WSS@99%) as a mea
sure of efficiency and reduced workload (Table 3). 

Table 1 
Datasets used in the experiments.  

Dataset N Positive 
articles 

Negative 
articles 

Total 2012–2020 160,712 29,810 130,902 
-Training 2012–2020 (80%)* 120,877 23,801 97,076 
-4 Balanced training subsets (A,B, 

C,D)†
48,070 23,801 24,269 

-Validation 2012–2020 (10%) 16,071 2953 13,118 
-Test 2012–2020 (10%) 16,072 3000 13,072 
Validation 2021 Core Journals 11,506 3491 8015 
Validation 2021 COVID-19 19,516 827 18,689 
Prospective test set 2022 11,274 1376 9898‡
Clinical Hedges test set 2000§ 49,024 3036 45,988 

*Unbalanced training set; 7692 articles with title + abstract < 128 words were 
removed. 
†4 balanced datasets, each containing all positive articles and a random selection 
of 25% of the negative articles were derived from the training dataset. 
‡This value includes 5385 articles that were predicted to be negative but that 
were not assessed by the research associates. 
§Wilczynski et al. [8]. 

Table 2 
Bayesian sweep of hyperparameters for each pre-trained model using Weights & 
Biases platform.   

BERT and BlueBERT BioBERT PubMedBERT 

Learning rate 2e-5 to 5e-5 1e-5 to 5e-5 1e-5 to 5e-5 
Training epochs 1–4 1–4 1–4 
Train batch size 16, 32 10, 16, 32, 64 16, 32  
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3. Results 

3.1. Model performance 

Based on performance in the hold-out dataset and 2021 core journal 
and COVID-19 validation datasets, we selected one model per dataset 
among the models developed on each set that optimized specificity 
when sensitivity was set to ≥ 99%. Three using the balanced datasets 
were BioBERT-based and one was BlueBERT based (Table 4). They were 
combined in a voting ensemble with articles classified as positive if ≥2 
of the 4 models predicted positive. Performance in the hold-out vali
dation set is presented in Table 4. The model derived from dataset D 
which performed better compared to other models and the ensembled 
model was applied to the 2021 datasets to confirm performance 
(Table 5). In the hold-out and independent validation datasets from 
2021, the ensembled model did not provide a boost in performance. 
Therefore, the model derived from dataset D (hearafter named DL-PLUS) 
was selected for prospective evaluation. 

3.2. Independent tests 

During the independent test phase, 11,274 articles pre-filtered from 
PubMed were processed by DL-PLUS. Of those, 4068 were predicted 

positive and 7206 were predicted negative. All positive and a random 
1771 predicted negative were critically appraised by blinded research 
associates (Fig. 3). Performance of the model across all articles, those 
from the core journal set, and those related specifically to COVID-19 
outside of the core journal set are described in Table 6. DL-PLUS per
formance in 49,024 articles in Clinical Hedges is also in Table 6. 

4. Discussion 

4.1. Findings 

Our goal was to develop models, using modern deep learning tech
niques and PTLMs developed for the domain, to retrieve high quality 
studies across a range of clinical study questions, including diagnosis, 
prognosis, clinical prediction guides, etc. at the time of publication by 
using minimal features (e.g., title and abstract only). Deep learning 
approaches have been used to classify high quality clinical studies 
[13,34,47], but only one has used a pretrained language model for 
training [34], and the focus was on identifying studies on treatments 
only. Our model is the first we are aware of that identifies articles across 
the purpose categories trained using PTLMs. 

A primary goal for literature surveillance is to quickly identify 
research that could impact care decisions. Maximizing specificity while 
maintaining high sensitivity to reduce the burden of manual critical 
appraisal stages while ensuring that all relevant articles are assessed 
improves the efficiency of the process. In the prospective evaluation of 
the model performance, specificity was 73% overall and the NNR, 
calculated as 1/precision, was 3.0 (95% CI, 2.8–3.1) meaning research 
associates would need to read 3 articles before they found one that met 
methodological criteria. This compares to NNRs of 4.6 (CI, 4.5 to 4.8) for 
2019 when only Boolean search filters were in place, and 3.7 (CI, 3.5 to 
3.8) using an earlier LightGBM model we developed in 2021 (Lokker, 
unpublished). WWS@ 99% also reflects the reduction in labour required 
for reviewing articles [46], with a 42% reduction for core journal arti
cles and 73% for COVID-19 articles and 63% overall. 

DL-PLUS has been fully implemented into the McMaster PLUS 
pipeline as a processing step between the Boolean search filters and 
entry into the CAP database (Fig. 1) since Aug 13, 2022. By Mar 31, 
2023, the model predicted that 6063 of 15,862 articles retrieved from 
PubMed were positive, a 62% reduction in articles requiring appraisal 
by research associates, which aligns with WSS@99% results from the 
prospective evaluation. This increase in efficiency, has saved an esti
mated >800 h of staff time (assuming 5 min per article for assessment). 
Notably, for articles relating to COVID-19 retrieved from all journals 
indexed in PubMed, not just the PLUS core journals, the model has 
greater specificity, and higher NNR. The PubMed search strategy for 
these articles is more specific as it contains content words to exclude off 
target articles. The vast volume and variable quality of COVID-19 

Table 3 
Performance metrics definitions and formula.  

Measure Definition Formula 

Sensitivity (recall) The proportion of correctly identified 
positives among the real positive. 

TP/TP + FN 

Specificity the proportion of actual negatives, 
which got predicted as negative (or 
true negative) 

TN/TN + FP 

Accuracy the number of correctly predicted 
documents out of all classified 
documents. 

TP + TN/TP +
FP + FN + TN 

Precision Proportion of correctly identified 
positives among all classified 
positives. 

TP/TP + FP 

AUC The area under the curve is traced out 
by graphing the true positive rate 
against the false-positive rate. The 
higher the AUC, the better the 
classifier prediction.  

Number needed to 
read 

The number of articles that need to be 
read before finding one that is positive 
(meets criteria) 

1/precision 

Work saved over 
sampling at 99% 
recall [46] 

The percentage of all articles that are 
predicted negative by the algorithm 
and therefore not reviewed 

(TN + FN)/N – 
(1 – recall)=
(TN + FN)/N – 
0.01 

TP: true positive; TN: true negative; FN: false negative; FP: false positive. 

Table 4 
Performance of the top performing models derived from the unbalanced dataset, each balanced data set, and the ensembled majority vote in the hold-out validation 
dataset.  

Parameter Performance of model from each dataset (95% CI)  

Unbalanced model Set A model Set B model Set C model Set D model 
(DL-PLUS) 

ABCD Ensemble* 

Pretrained model BioBERT BioBERT BlueBERT BioBERT BioBERT  
Sensitivity† 99.0% (98.6–99.4) 99.0% (98.7–99.4) 99.1% (98.7–99.4) 
Specificity 66.6% (65.8–67.4) 66.2% (65.4–67.0) 59.5% (58.7–60.4) 70.2% (69.5–70.9) 70.2% (69.4–71.0) 69.7% (69.0–70.5) 
Accuracy 72.6% (71.9–73.3) 72.2% (71.5–72.9) 66.8% (66.1–67.5) 75.5% (74.8–76.1) 75.5% (74.8–76.2) 75.1% (74.5–75.8) 
Precision 40.1% (38.9–41.2) 39.7% (38.6–40.9) 35.5% (34.5–36.6) 42.7% (41.6–43.9) 42.8% (41.6–44.0) 42.4% (41.3–43.6) 
AUC 0.97 0.97 0.96 0.97 0.97 NA 
NNR 2.50 (2.43–2.57) 2.52 (2.45–2.59) 2.81 (2.74–2.90) 2.34 (2.28–2.40) 2.34 (2.27–2.40) 2.36 (2.29–2.42) 
WSS@99% 54% 53% 48% 56% 56% 56% 

AUC = area under the curve; NA = not applicable; NNR = number needed to read (1/precision); WSS@99% = work saved over sampling at 99% recall. 
*Articles classified as positive if ≥ 2 of the 4 models predict positive. 
†Sensitivity was set at 99% hence each model that was selected had equivalent values. 
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articles across all journals explains the lower precision, the greater NNR, 
and the higher WWS@99% of 73%. All retrieved articles, regardless of 
meeting quality criteria, are added to COVID-19 Evidence Alerts, a 
searchable web platform with optional free registration for email alerts 
to support access to the appraised research [48]. 

Given the longevity of the McMaster PLUS surveillance program, we 
were able to leverage a large, consistently produced dataset that is 
collated using accepted standards for quality assessment. The Clinical 
Hedges dataset is considered an established standard for search strate
gies and machine learning model development for retrieving high 
quality studies. It was produced in 2000 and is comprised of all items 
indexed in PubMed from 160 journals, including letters and editorials, 
etc. [8]. The other datasets used in this study include only articles that 
have been prefiltered using Boolean search strategies that purposely 
exclude some indexed items such as letters. The lower performance of 
DL-PLUS in the Hedges dataset could be explained by the noise added by 
these entries. 

In this study, training was done with the unbalanced training set and 
smaller datasets to address the imbalance in the positive and negative 
classes and included evaluating the effect of ensembling models trained 

using the smaller sets. However, ensembling when tested in independent 
sets of data did not boost performance over the solo models as antici
pated [45]. This lack of gain in performance could be due to each 
training dataset having the same positive class articles. Given the need 
for greater processing power for ongoing classification of articles using 
an ensemble model with no gain in performance, we focused further 
efforts on the solo DL-PLUS model. 

4.2. Comparison with prior work 

Machine learning applied to finding high quality clinical research is 
an active area of discovery, particularly recent training of deep learning 
models. Del Fiol et al. [13] used a noisy dataset of >400,000 PubMed 
articles to train a convolutional neural network to identify high quality 
articles on treatment. They compared the performance of their model to 
Clinical Queries search filters in the Hedges dataset and achieved 97% 
sensitivity, 35% precision and an F-measure of 0.51. Our model ach
ieved similar performance in identifying articles across all purpose 
categories in our prospective test—not only treatment—a category of 
studies that have a relatively standard and consistent language in 

Table 5 
Performance of DL-PLUS, the ensembled model, and the model trained using the unbalanced dataset in independent validation datasets from 2021 representing core 
journal articles and COVID-19 articles.   

Performance in 2021 core journal dataset (95% CI) Performance in 2021 COVID-19 dataset (95% CI)  

DL-PLUS Ensemble Unbalanced DL-PLUS Ensemble Unbalanced 

N 11,506 11,506 11,506 19,516 19,516 19,516 
Sensitivity 99.5% (99.3–99.8) 99.6% (99.3–99.8) 99.3% (99.0–99.6) 98.7% (97.9–99.4) 98.9% (98.2–99.6) 98.1% (97.1–99.0) 
Specificity 60.7% (59.5–61.6) 59.8% (58.8–60.9) 56.0% (54.9–57.1) 77.3% (76.7–77.9) 77.7% (77.1–78.3) 75.5% (74.9–76.1) 
Accuracy 72.4% (71.6–73.2) 71.9% (71.1–72.7) 69.1%  

(68.3–70.0) 
78.2% (77.6–78.8) 78.6% (78.1–79.2) 76.5% (75.9–77.1) 

Precision 52.4% (51.2–53.6) 51.9% (50.7–53.1) 49.6% (48.4–50.7) 16.1% (15.1–17.1) 16.4% (15.4–17.4) 15.0% (14.1–16.0) 
NNR 1.91 (1.87–1.95) 1.93 (1.88–1.97) 2.02 (1.97–2.07) 6.21 (5.84–6.62) 6.10 (5.74–6.51) 6.66 (6.26–7.11) 
WSS@99% 42% 41% 38% 73% 73% 71% 

NNR = number needed to read (1/precision); WSS@99% = work saved over sampling at 99% recall. 

Fig. 3. Real-world test of the DL-PLUS model predictions in active surveillance of the literature between March 12th, 2022 to Aug 12, 2022. Research associates 
blind to model predictions classified and appraised 5839 articles, including all predicted to be positive articles and 25% of those predicted to be negative. 
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reporting. Ambalavanan and Devarakonda [34] used more elements of 
the Clinical Hedges dataset to develop ensemble models, cascade 
ensemble, and a single integrated model based on SciBERT. The ele
ments included article format (original or review), of interest to human 
healthcare (yes/no), article purpose category, and rigor (yes/no). They 
concluded that at a fixed recall, an individual task learner model out
performed the others, while suggesting that their cascade ensemble 
which had a higher F-measure (0.75) was more suitable for interactive 
searching. In a subset of treatment articles, at a fixed recall of 98.5%, 
their individual task learner model had 38.1% precision. Afzal, et al. 
[47] used articles identified from Cochrane reviews as methodologically 
rigorous and developed a deep learning model based on multi-layer 
perceptron and compared it with a few conventional machine learning 
models including Support Vector Machine and Gradient Boosted Tree. 
They achieved a higher performance using deep learning, with accuracy 
of 97.3%, 95.1% recall, and 86.2% precision. 

Transformer-based deep learning, particularly BioBERT, is showing 
promise in addressing the challenge of identifying high-quality evidence 
in the vast pool of clinical articles being published. So far, much of the 
work is on studies of treatment, which support the majority of clinical 
questions posed by clinicians [49]. 

4.3. Limitations and future work 

We demonstrated that fine-tuning PTLMs on our dataset is effective 
for identifying high quality evidence. We anticipate that further im
provements in performance could be achieved by addressing the class 
imbalance and lack of articles for some of the categories, such as prog
nosis or diagnosis. In this work, we used an under-sampling technique to 
balance the dataset for training and ensembling to address class imbal
ance with an expectation of boosting performance. Oversampling has 
yet to be explored to balance the dataset in upward direction by 
enriching the rare class. Plans include exploring state-of-the-art data 
augmentation approaches to address the imbalance and to assess impact 
on performance. Additionally, the model is not designed for identifying 
articles within particular categories but rather serves to retrieve all high- 
quality studies across categories while limiting off-target articles. We 
have not assessed how the model would perform for uses other than a 
broad literature surveillance program or in PubMed without the Boolean 
search filters. We plan to train PTLMs for category specific models, 
especially for smaller categories such as prognosis and diagnosis, using 
the data in our ML dataset. Thus far, we have focused on binary classi
fication by quality criteria and have not leveraged the other features 
added by research associates. 

5. Conclusions 

We trained DL-PLUS using state-of-the-art PTLMs to identify high- 
quality, clinically relevant articles from PubMed at the time of publi
cation using minimal features. The model maintains high recall and 
improves upon specificity compared with other approaches. It has been 
implemented into a real-time literature surveillance program, reducing 
the burden of manual critical appraisal by > 60%; a significant savings 
of research staff time and improvement in efficiency to support quick 
dissemination. 
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Appendix A 

Critical Appraisal Process Inclusion Criteria from https://hiruweb. 
mcmaster.ca/hkr/what-we-do/methodologic-criteria/. 

Basic criteria for original studies, systematic reviews, pooled orig
inal studies, and evidence-based guidelines:  

• in English  
• about humans  
• about topics that are important to the clinical practice of medicine, 

nursing, rehabilitation, and other health professions, other than 
descriptive studies of prevalence  

• analysis of each article consistent with the study question. 

Studies of prevention or treatment must meet these additional 
criteria: 

Table 6 
Performance of DL-PLUS in a prospective test within an active literature sur
veillance process between March 12th, 2022 and Aug 12, 2022 and the Hedges 
dataset.   

Performance (95% CI) 

Parameter All 2022 
articles (n ¼
11,274) 

Core journal 
articles (n ¼
3774) 

COVID-19 
articles (n ¼
7500) 

Hedges 
(n ¼
49,024) 

Sensitivity 99.7% 
(99.4–100) 

99.8% 
(99.5–100) 

99.4% 
(98.5–100) 

83.7% 
(82.4–85.0) 

Specificity 72.8% 
(71.9–73.6) 

60.2% 
(58.4–62.1) 

77.5% 
(76.5–78.5) 

80.8% 
(80.5–81.2) 

Accuracy 76.1% 
(75.3–76.8) 

71.4% 
(69.9–72.8) 

78.4% 
(77.5–79.3) 

81.0% 
(80.7–81.3) 

Precision 33.3% 
(32.3–35.7) 

50.0% 
(47.6–52.3) 

16.1% (14.5 – 
17.7) 

22.2% 
(21.7–23.2) 

NNR 3.0 (2.8–3.1) 2.0 (1.9–2.1) 6.2 (5.6–6.9) 4.5 (4.3 to 
4.6) 

WSS@99% 63% 42% 73% 61% 

NNR = number needed to read (1/precision); WSS@99% = work saved over 
sampling at 99% recall. 
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• random allocation of participants to comparison groups  
• ≥ 10 patients per group (assessed for outcome)  
• primary outcome(s) assessed in ≥ 80% of those randomized  
• outcome measure of known or probable clinical importance  
• subgroup analyses must be preplanned, with groups analyzed as they 

were randomized; analyses must test for interaction between ≥ 2 
subgroups. 

Studies of diagnosis must meet these additional criteria:  

• inclusion of a spectrum of participants, all suspected of having the 
disease, with some, but not all, found to have the disease of interest 
after diagnostic testing  

• inclusion of ≥ 100 participants, with ≥ 50 participants with the 
disease and ≥ 50 participants without the disease  

• objective diagnostic (“gold”) standard (e.g., laboratory test not 
requiring interpretation) OR current clinical standard for diagnosis 
(e.g., a venogram for deep venous thrombosis), preferably with 
documentation of reproducible criteria for subjectively interpreted 
diagnostic standard (i.e., report of statistically significant measure of 
agreement beyond chance among observers)  

• each participant must receive both the new test and some form of the 
diagnostic standard  

• interpretation of diagnostic standard without knowledge of test 
result  

• interpretation of test without knowledge of diagnostic standard 
result  

• diagnostic test characteristics reported. 

Diagnostic tests may also be tested in randomized trials, in which 
case the criteria for prevention or treatment apply. 

Studies of prognosis must meet these additional criteria:  

• inception cohort of patients at a similar and early point in the course 
of a disease or condition, all initially free of the outcome of interest  

• prospective standardized data collection  
• ≥ 80% follow-up until the occurrence of a major study endpoint or to 

the end of the study. 

Studies of clinical prediction guides must meet these additional 
criteria:  

• purpose is to validate or compare a rule/index/scale/model that 
combines ≥ 2 factors into some type of score/ranking that assigns 
individual patients to different levels of risk for a specific outcome 
(diagnosis, prognosis, treatment responsiveness) based on the pres
ence/absence of these factors  

• data for the prediction guide must be available before data on the 
outcome that it is predicting 

• the guide must be generated in one or more sets of real (not hypo
thetical) patients (derivation or development cohort)  

• the guide must be validated in another set of real (not hypothetical) 
patients (validation cohort); internal bootstrapping is not acceptable 
as validation  

• studies validating a previously derived clinical prediction guide 
should explicitly state that the derivation was done in a separate 
patient cohort  

• prediction guides developed using individual patient data from > 1 
study do not require separate validation  

• study must provide information on how to apply the prediction guide 
in individual patients or cite a reference to this information. 

Studies of etiology of harm from medical interventions must meet 
these additional criteria:  

• explicit purpose is to assess adverse effects of an intervention  

• prospective standardized data collection with clearly identified 
comparison groups for those at risk for the outcome of interest  

• groups are matched or analyses adjusted to create comparable 
groups (e.g., quasi-randomized controlled trial, nonrandomized 
controlled trial, cohort study with case-by-case matching or statis
tical adjustment to create comparable groups, nested case–control 
study)  

• blinding (masking) of observers of outcomes to exposures (criterion 
assumed to be met if outcome is objective, e.g., all-cause mortality or 
objective test) 

• if harm reported, relative risk (RR) or hazard ratio (HR) or equiva
lent ≥ 2.0, with a lower 95% CI that excludes 1.5 

• if no harm reported, upper 95% CI of RR or HR or equivalent ex
cludes 1.5. 

Randomized controlled trials assessing adverse effects are evaluated 
using criteria for studies of prevention or treatment. 

Studies of quality improvement or continuing education must 
meet these additional criteria:  

• random allocation of participants or units to comparison groups  
• ≥ 10 patients per group (assessed for outcome)  
• ≥ 1 specified outcome assessed in ≥ 80% of those randomized at ≥ 1 

follow-up point  
• outcome measure of known or probable clinical or educational 

importance  
• subgroup analyses must be preplanned, with groups analyzed as they 

were randomized analysis must test for interaction between ≥ 2 
subgroups. 

Studies of the economics of health care programs or interventions 
must meet these additional criteria:  

• alternate diagnostic or therapeutic services or quality improvement 
activities must be compared on the basis of both the outcomes pro
duced (effectiveness) and resources consumed (costs) in real patients 

• evidence of both effectiveness and costs reported in a single ran
domized controlled trial that passes criteria for prevention or 
treatment  

• results must be presented in terms of the incremental or additional 
costs and outcomes of one intervention over another. 

Systematic review articles must meet these additional criteria:  

• explicit statement of the clinical topic  
• identifiable description of the methods, including the databases 

searched and inclusion and exclusion criteria for selecting articles for 
detailed review; reviews of treatment, primary prevention, quality 
improvement, or economics must search for RCTs; reviews of prog
nosis must have “inception cohort” as an inclusion criterion  

• > 1 major database searched  
• number of articles retrieved/reviewed, and the number passed/ 

included must be reported. 

Pooled original studies must meet these additional criteria:  

• analysis in which patient-level data are pooled from ≥ 2 studies/ 
cohorts/sources to assess a question related to one of the study cat
egories but article DOES NOT meet criteria for a systematic review 

Evidence-based guidelines must meet these additional criteria:  

• the Guideline must be based on a published systematic review that 
passes our current criteria for a Review 

C. Lokker et al.                                                                                                                                                                                                                                  



Journal of Biomedical Informatics 142 (2023) 104384

9

• methods and findings of the systematic review may be reported 
within the Guideline document or in a separate document that ac
companies the Guideline or is cited in the Guideline and is accessible  

• evidence underpinning the recommendations must be reported (e.g., 
citations of studies, estimates of effect, etc.) 

• the strength of the evidence (such as GRADE) for the recommenda
tions must be reported 
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